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.. Portability of assembly language software can be achieved in a
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differences in the architectural structures of different machines. In
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process of simulating one machine or another. The goal of such
translation, however, should be the generation of assembly language
code for the target machine that approximates, in efficiency and in
appearance, code written to perform the same task by a 4goodO' assembly
language programmer in the target language.

A translator that performs a decompilation of the source program
into an intermediate representation at a higher semantic level is
described. Code in the target assembly language can later be
generated from this intermediate representation. This translation
scheme is shown to remove most of the machine dependency from assembly
language software..
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INTERCOMPUTER TRANSPORTATION OF ASSEMBLY LANGUAGE

SOFTWARE THROUGH DECOMPILATION

INTRODUCTION

MOTIVATION AND DIRECTION

Software portability is a primary concern of users anticipating
an upgrade or replacement of computer hardware currently in use. If
the software to be preserved is written in some standard, high-level
language that both systems support through compilers, it can be
shared in a straightforward manner. However, if the high-level

language in which that software is written is not supported by both
systems, or if the software is written in the assembly language of
one of the machines, transporting the software between computer
systems becomes a problem. Automatic intercomputer translation of
assembly (or machine) language code is a possible solution to this
problem.

The most obvious application domain for a translator is that of
debugged, fully-implemented programs. Such a translator has greater

potential utility than this, however. Consider the translation of an
assembly language program that is not yet fully implemented but has
no errors in syntax. Let this translation be realized textually.

(In other words, let both the input and output programs of the
translator be humanly readable code written in the assembly languages
of their respective machines). If the output program is as well
commented and mnemonically meaningful as the input program, then it
is possible to continue the debugging process with the output
program. The translation can be realized at any point in the
development process as long as the input program is syntactically
correct. This capability would be particularly effective in a
situation where, for some reason, the target machine supported
debugging better than the source machine. (For example, the former
might support some online debugging tool.) Also, looking at the
semantics of the program from a new perspective sometimes reveals

features (and misfeatures) not otherwise noticeable. For instance,
extran-ou dati o!i- an )Ftone !etected after a change in
perspective. (It is assumed here that program locucn, itti,, i-;
preserved in the transition from source to target code.)

The utility of such a translator should not be denied even by one
who abhors the idea that assembly language programs are still being
written. There seems to be, however, a paucity of written matter and
research concerning this subject. Probably the foremost reasons for
the lack of real technological progress in this area are the varying
architectural structures of different computers and the difficulties
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involved in producing efficient code for one machine from code
intended for a quite different machine.

The UYK-7 computer is used here as an example of a source machine
for which the use of this type of translator is particularly
appropriate. The UYK-7 is a militarized version of a 32-bit, ones
complement Sperry Univac machine. Produced in the late 1960s - early
1970s, it is used widely for U.S. Naval applications. However, its
relatively aged architecture makes it a likely candidate for
replacement in the near future. Since a great deal of assembly
language software has been generated for this machine, a translator of
the sort described herein could aid substantially in reclaiming much
of the investment in UYK-7 assembly language software.

This report considers the possibility of Digital Equipment

Corporation's PDP-11/70 computer or a similar machine as a successor
to the !rYK-7. It is worthwhile to examine some of the more pronounced
architectural differences between the UYK-7 and the PDP-11/70 for two
reasons: (1) an intercomputer translator for the two machines would
have to address these differences, and (2) the utility of such a F
translator would be constrained by these differences.

TRANSLATION CONSTRAINTS

Instruction Formats

The difference in the machines that is most relevant to the
designer of a translator is the difference in instruction formats.
The PDP-11/70 assembly language has a standardized format consisting
of an operator and one or two operands, with data descriptors
associated uniformly with each operand. The UYK-7 has several formats
that can be used. For instance, in one UYK-7 instruction format, the
operator, accumulator register, bit field within the 32-bit word,
index register, and memory base register must be specified. These
formats accompany the operators rather than the operands because of
the accumulator, single-operand structure of the UYK-7. Translation
between instruction formats is a minimal requirement of such a
translator.

Word Size

The UYK-7 computer has a word size of 32 bits, while the

PDP-ll/70, a minicomputer, has a word size of 16 bits. The word size
affects the size of integer numbers each machine can manipulate, as
well as the precision of real numbers. While the limits of the
integers that the UYK-7 can handle are sufficient for most integer
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calculations in practice, the PDP-11/70 user is limited to signed,
single-precision integers no larger than 32,768. Since the UYK-7
programmer has made the assumption that 32 bits can be used to
represent each integer, a well-designed translator would have to
provide for that.

A UYK-7 to PDP-11/70 translator could use double precision (two
words) for all its integer values. As an alternative, the translator
could request human intervention to specify, for each integer
variable, whether to use single or double precision and generate code
accordingly. When the user does not specify either single or double
precision, however, double precision could be assumed.

There is no practical way to maintain the precision of real

numbers, since both machines already use double precision
representation for them. The two words with which the UYK-7
represents real numbers provide 64 bits of precision, while two words
on the PDP-11/70 only provide 32 bits of precision.

Processing Power

The UYK-7 processor hardware is generally more powerful than that
of the PDP-ll/70. For example, the UYK-7 has a single machine level
instruction that computes the 32-bit square root and the 32-bit
residue of a 64-bit integer; the PDP-11/70 does not offer an
equivalent instruction. However, the hardware of the UYK-7 can
usually be simulated in software on the PDP-lI/70. Although the
execution time for the functionally equivalent sequence of
instructions in this case is greater on the PDP-1I/70, it is possible
to execute that sequence, and the translator should account for it.

Console Features

As a part of its instruction set, the UYK-7 provides for the
testing of certain switches on the actual console of the machine. For
instance, there is an instruction JC (Jump Conditional Setting) in the
UYK-7 repertoire. This instruction jumps to a given position in the
program, conditional on the (up or down) position of a switch on the
console. The PDP-11/70 hardware is not equipped to handle such an
instruction or a semantic equivalent (without halting the process and
waiting for information to be entered from switches on the console, if
any exist). Therefore, translation cannot include such instructions.

3
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Data Access

Another difference in the two machines involves the structure of
the memory. Although memory protection is not handled precisely the
same way in each, it is handled analogously. Protected memory can be
accessed by a privileged program in both, and the semantics of this
sort of access can be captured by the translator. Having privileges
in the UYK-7 to execute an instruction that references protected
memory makes it necessary to have analogous privileges in the
PDP-11/70 for the translation to succeed.

The PDP-11/70 has six general purpose registers that can be used
for operations on data. Many of these operations can act on data in
regular memory locations as well, but execution time is greatly
reduced by action on the data in registers. On the other hand, the
UYK-7 has eight accumulator registers, at least one of which must be
used for a typical operation. Since the reasons for moving data into
registers are different in the two machines, more efficient code would
be produced if the translator moved data into the registers by using
criteria other than what the source program dictates.

The virtual memory for a program on the UYK-7 is partitioned into
eight segments, any one of which may be referenced by a program
through the use of segmentation registers. Although the PDP-11/70
supports no such segmentation, this does not present a problem to the
translator. A program's virtual memory on the PDP-11/70 can be
artificially divided the same way through software created by the
translator. In the case of a textual translation, the translator can
generate unique symbols that correspond to the eight segments and
suffix the name of a variable with those symbols identifying the
segment that contains it.

Indexing is accomplished in the the UYK-7 by the use of a set of
seven index registers. In the PDP-ll/70, it is accomplished by using
the general registers. Translation of an indexed variable is
therefcre straightforward; however, the six general registers are put
in greater demand. Intelligent register allocation becomes even more
important.

One more point is relevant in a discussion of the differences in
data accessing on the two machines. Even though a PDP-11/70 word is
two bytes in length, memory is addressed in bytes; that is, each byte
has its own address. Even numbered addresses begin words. Although
this addressing scheme presents no real problems to the designer of a
translator, it should be kept in mind during the design.
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Integer Representation

The UYK-7 is a ones complement machine, while the PDP-11/70 is a

twos complement machine. This fact is relevant to the translator only
when the instruction LN (Load Negative) is used. When this
instruction is used by a programmer, it is not clear whether the
negative of some integer or the bitwise complement of that data word
are to be loaded since they are expressed the same way on the UYK-7
but are distinct on the PDP-Il/70. A consistent choice in translation
is the only reasonable solution to this problem. Of course, each such
application of this assumption should be noted by the translator to
facilitate human identification of instances where the assumption is
incorrect.

Condition Codes

The UYK-7 has condition codes that allow the following facts to
be recorded after execution of a COMPARE instruction: "not equal
versus equal," "less than versus greater than or equal," and "within
limits versus outside limits." The PDP-11/70 condition codes support
the first two pairs of relations, but not the limits relation.
However, this relation can be expressed in software by using the first
two relations and comparing the data with the limits in several steps.

Another difference in the two computers' uses of condition codes
relates to the circumstances upon which the codes are changed. The
UYK-7 only changes the condition codes after execution of a COMPARE
instruction. However, many PDP-11/70 instructions change them (e.g.,
ADD and SUB). No translation problem occurs when the PDP-11/70 is
used as the target machine if the codes are examined by the translator
immediately after simulating the UYK-7 COMPARE instruction.

Traps, Interrupts, and Input/Output

Traps, interrupts, and input/output (1/O) are handled very
differently in the two machines. For example, the UYK-7 uses a
special set of commands for I/O control that initiate output buffers,
set specific bits in the processor, and accomplish other machine
dependent functions. The utility of automatic translation breaks down
at this point. One way of treating this problem that should be
considered, particularly in the case of textual translation, is simply
to clearly mark on the output listing, each instruction that is not or

cannot be translated. If such instructions are indicated by the
translator, the user can then patch them with code generated by hand.
This plan is practical only if program comments are preserved and the
code that is generated by the translator is understandable.
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Memory Size

Because of the difference in word sizes in the two machines,
considerably less memory is addressable on the PDP-11/70 than on the
UYK-7. This limitation, which is fundamental, is caused by the target
machine, not the translator; the translator cannot, therefore, accept
the responsibility for it.

TRANSLATION SCHEMES

There are two general schemes for accomplishing a translation of
the type described previously. One of the schemes requires the use of
a mapping of the source language instruction set directly into that of
the target language. The other involves decompilation, or inverse
compilation, of the assembly language code.

The former scheme functions on the premise that each instruction
in the source language can be equivalently represented by an
instruction or sequence of instructions in the target language. In
order to effect a translation by this scheme, the instruction map must
first be realized for the general case. If the implementation of this
scheme is limited to the mapping, the target machine essentially

simulates the hardware architecture of the source machine. Before
translation, the program is tailored (in a sense, "optimized") for
execution on the source machine. Effecting an instruction by
instruction translation of this program directly to the target
language seems rather impractical in light of the significant
architectural differences of different machines. The basic structure
of a program written in the assembly language of one machine generally
differs from that of a program written in the assembly language of
another machine. For instance, one machine may use a single
accumulator for all arithmetic operations. In that case, sequences of
instructions frequently take the general form of:

Load X
Operate Y
Store Z.

Creating code of that form through the translator for a machine

with six general purpose registers, and which can operate directly on
data in memory, introduces great inefficiency. The goal of an
intercomputer assembly language translator is to generate a program
that looks very much as if it were written by a "good" assembly
language programmer for the target machine. Therefore, an optimizing
process for this translated code would enhance the translator's
utility.

6
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When incorporating optimization, care must be taken that: (1)
each instruction in the source program translates into an exact
semantic equivalent in the target program, and (2) through whatever
optimizations are brought about, the semantics of the program are left
unchanged. If it can be shown that the semantics of each instruction
in the source program are preserved through the mapping into sequences
of instructions in the target program and also through optimization,
translation correctness can be deduced.

As an aid in evaluating this translation scheme, a partial
mapping of the instruction set of the AN/UYK-7 computer directly into
that of the PDP-11/70 was accomplished. In all, 110 UYK-7
instructions were mapped into PDP-11/70 equivalents. Even though this
mapping was somewhat unpolished, rough ideas of efficiency can be
obtained by analyzing it.

In generating the mapping, there were often tradeoffs between
clarity, space (memory) requirements, and (execution) time
requirements of the target code. When these arose, they were resolved
according to the following priorities: (1) clarity, (2) space
requirements, and (3) time requirements.

The mapping was achieved only by imposing some restrictions on
particular instructions. For example, translation of the UYK-7
instruction, which computes the square root of a 64-bit integer,
generates PDP-1l/70 code, which only computes the square root of a
32-bit integer. Such compromises are necessary for the reasons cited
above.

The 110 instructions that were mapped were chosen because they
appeared to be simple to map. Most of the instructions in the UYK-7
repertoire that were not mapped are machine-dependent instructions
relating to traps, interrupts, and I/0.

The mapping did not include any PDP-11/70 instructions added for
optimization purposes, such as movement of data into the registers
simply for more optimal execution time. Additionally, no UYK-7
instructions were mapped to PDP-11/70 subroutine calls exclusively in
order to achieve greater space efficiency.

Results of the instruction mapping are as follows:

1. Out of 110 UYK-7 instructions mapped into PDP-11/70
instructions, there were 93 that mapped into less than eleven
PDP-11/70 instructions each. The mean number of PDP-11/70
instructions generated by a UYK-7 instruction in this group was 4.3
with a standard deviation of 2.4.
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2. Out of the remaining 17 UYK-7 instructions that mapped into
greater than ten PDP-11/70 instructions, the mean was 15.1 PDP-11/70
instructions generated per UYK-7 instruction with a standard deviation
of 5.4. The largest number of PDP-11/70 instructions generated for
any UYK-7 instruction was 30 for the integer square root instruction.

3. Overall, with 110 instructions mapped, the mean number of
PDP-11/70 instructions generated per UYK-7 instruction was 6.0 with a
standard deviation of 5.0.

These results were somewhat predictable from the computer
differences described previously. The translation efficiency can be
improved by using the decompilation scheme, which will be described,
or by adding an optimization step to the translator.

The alternate translation scheme involves decompilation of
assembly language, which is by nature at a rather low semantic level,
into a functionally equivalent intermediate representation at a higher
level. Decompilation extracts the semantics of a program by
translating a machine-oriented language into a procedure-oriented
language. After decompilation, this scheme concludes with generation
of the target code from the intermediate procedure-oriented
representation. (See figure 1.) The use of a higher level
intermediate representation provides both machine independence and an
opportunity for manipulating groups of instructions within a greater
context. In the case of textual translation, it is possible for
programmers to continue the development effort at this level. The
higher level of representation afforded through decompilation promotes
the generation of efficient target code.

The decompilation system described can be viewed as an
instruction mapper to an intermediate language and an associated
optimizer. This scheme is in sharp contrast to a scheme in which
instructions of one computer are mapped directly to instructions of
another without the use of an intermediate representation. Use of an
intermediate representation in computer translation offers another
advantage, particularly if several computers must share code. If M
computers need to share code with N more computers, (M*N)-(N+N)
translators are saved by the use of an intermediate representation.
(See figures 2 and 3.) This phenomenon has been discussed before, and
an attempt was made to create a universal language into which all
other languages could be compiled and from which machine-dependent
code could be generated. That project was called UNCOL.1 It failed
to achieve its goals because it could not represent completely the
semantics of diverse high-level languages or the variety of machine
architectures. The choice of an intermediate representation is very
important, and is discussed more fully in the section dealing with
Pass Two.

8
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Figure 1. Program Translation Using Decompilation

THE PROTOTYPE

The decompiling phase of an intercomputer assembly language

translator has been implemented. The source language on which it acts

is a subset of ULTRA/32, the assembly language of the AN/UYK-7

computer. The system has been given the name ZEBRA. The intermediate

representation language, called STRIPE, is comprised of quadruples:

Operator Operand I Operand 2 Destination

and associated comments. Also produced by the decompiler is a symbol

table and a control flow description of the decompiled program. The

output of ZEBRA is textual (that is, humanly readable), thus allowing

program development to continue. (See figure 4.) PASCAL is the

language of implementation for ZEBRA.

The decompilation effort, as presently implemented, requires

three passes through the various forms of the subject program. Pass

One scans the source program, lexically analyzing and parsing it. Two

output files are produced: a listing file indicating detected errors,

and a file containing the program in a fixed format (PASCAL records),
which is more convenient for analysis by later passes. Also generated

by Pass One are tables describing the flow of control of the program

and containing information about the symbols used in the program.
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1 INTERMEDIATE REPRESENTATION

M+ N TRANSLATORS
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Figure 2. Computer Translation with an

Intermediate Representation

M COMPUTERS

M * N TRANSLATORS

N COMPUTERS

Figure 3. Computer Translation without an
Intermediate Representation
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Figure 4. The Zebra Compiler

Pass Two translates the program from PASCAL records to the

intermediate language STRIPE. A few errors are detectable at this

stage that could not be conveniently detected earlier.

Finally, Pass Three compresses the STRIPE representation, where

possible, by eliminating extraneous LOAD and STORE instructions. This
step accomplishes the decompilation itself. Decompilation is limited
to this extent in order to maximally capture the semantics of assembly
(low-level) code. Housel, 2 ,3 in reporting on a decompiler that

translates from Knuth's MIX Assembly Language into PL/l, described
this need to choose carefully the level of decompilation. 'The

current state of the art has not completely eliminated the "special
case" problem. However, the extent of automatic translation can

generally be increased if the level of the target translation is
sacrificed. The target language must be capable of expressing lower

level semantic constructs (e.g. shift, mask, etc.). The capability is

usually found in systems programming languages but is not included in

the more common algebraic languages (e.g. FORTRAN).' Since

translating to an existing high-level language is not the goal of this

report, but rather translating to another low-level language, the

level of decompilation chosen here seems both necessary and sufficient.
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RELATED WORK

The problems of machine portability in general have been
investigated for many years. Some of the following approaches have
been suggested for solving these problems: high-level languages,

interpretation, emulation, hand-recoding, compiler-compilers, and
machine-independent code generators. Warren 4 discussed several of
the previous topics relative to software portability.

Other attempts at attaining machine independence at various
levels of automatic computer language translation have been made.
Richards 5 described a portable compiler for the language BCPL, as
well as OCODE, the language used to specify the interface between the
machine-independent and machine-dependent parts of the compiler. He
was somewhat successful in transporting the language BCPL (a block-
structured language resembling ALGOL 60) between computers. He
described his experience as follows:

BCPL has now been transferred to between ten and twenty

different machines using OCODE as the interface
between two halves of the compiler. The time taken to

complete a transfer is very variable depending
strongly on the computing facilities available, and
usually takes between three and five months if the
implementer has no previous knowledge of BCPL and no
access to the donor machine, but it may take as little
as three or four weeks in ideal conditions. Much
depends on how long it takes to design and implement
the interface with the operating system; this can be
very little if one c'iooses to provide the user with
only a few very primitive facilities, but it is usual
to give him a more powerful interface and this

necessarily requires much more work.

Machine independent code generation was analyzed by New:omer 6

and Miller. 7  Each of these researchers produced notations for
formally describing the hardware architecture of a computer and a
language. UNCOL,l as mentioned previously, was a much heralded but
unsuccessful attempt to create a unive:.-al language. The Mobile
Prd.ramming SystemE, 9 also relied on translation to an intermediate
macro language. It differed from the UNCOL approach in that the macro
language was tailored specifically to the primary source language with
which the designers worked.

Relatively little research has been conducted in the area of
decompilation. However, several projects are noteworthy. A few words
should he said about decompilation as it exists in the literature

12



of computer technology. Every decompiler system studied in this
research translates a subject program from a machine (or assembly)
language into an existing high-level compiler language. Program
portability is the goal in these systems. The problem with such
decompiler systems is that they attempt too high a level of
decompilation to be practical. One advantage of ZEBRA lies in its
simplicity.

Barbe's PILER systeml0 is an example of a decompiler that has a
target level of translation higher than that of ZEBRA. The scope of
the software captured by PILER is limited by the semantic level of its
translation target. It is a powerful and flexible decompiler, but
requires substantial user interfacing. The translation source
language is a machine language formally described to the system as an
input. The target language of the translation is specified within the
PILER system as defined at translation time but remains at a rather
high level. PILER relies on intensive bookkeeping to derive the
program flow during analysis of source code. ZEBRA is similar in
spirit with respect to its analysis but differs in its choice of
translation level.

Hollanderll, 12 proposed a strategy for decompilation which uses
a table-driven, syntax directed metasystem for process description.
The metalanguage he developed is quite general, and his techniques
should be applicable to a large variety of operations. Housel and
Halstead's work 2' 3 has already been mentioned. The methodology they
developed was important in the design of ZEBRA. However, their target
level of decompilation was much higher than is necessary for simple
intercomputer translation of assembly language software.

It is apparent that compiler technology lends itself quite well
to decompilation. The syntax-directed translation suggested by
Hollander is an example of this fact. Aho and Ullman 13 and
Gries 14 provide a overview of compiler technology. Their
methodologies for determining busy conditions (called "ud-chaining" by
Aho and Ullman and defined in the Pass Three section) are utilized in
Pass Three of ZEBRA. Additionally, the schemes they described for
conducting a lexical analysis were helpful in designing Pass One.

13



PASS ONE - LEXICAL AND FLOW ANALYSIS

This section describes methodologies used in implementing Pass

One of a decompiler from ULTRA/32, the UYK-7 assembly language, to
STRIPE, an intermediate language designed for this purpose. Pass One
scans the source program, lexically analyzing and parsing it. Two
output files are produced: a listing file indicating detected errors,

and a file containing the program in a fixed format (PASCAL records)
more convenient for analysis by later passes. Also generated by Pass
One are tables describing the flow of control of the program and
containing information about the symbols used in the program.

LEXICAL ANALYSIS - SEPARATING DATA FROM INSTRUCTIONS

One of the functions of Pass One is to perform a lexical analysis

of the source program. This analysis identifies the program's
instructions and data. A mapping of the program is generated which

indicates whether a particular line contains an instruction or data.
This instruction mapping, called the INSMAP, describes to later
decompilation phases how the contents of the output file of the
previous phase are to be interpreted. The instruction mapping is

implemented in PASCAL as

PACKED ARRAY [I..MAXPROGSIZ] OF BOOLEAN

where MAXPROGSIZ is a program-defined constant indicating the maximum
number of lines accepted for a source program. The instruction
mapping is indexed by program line numbers. A TRUE value for a
particular element of the mapping indicates that line contains either

a valid instruction or no instruction (i.e., just a comment). A FALSE
value indicates that data is defined and perhaps initialized on that

line.

The output file of Pass One contains all the information that the

source file contains. However, in the output file, all implied
subfields of instruction operands are made explicit, and the
components of the line are explicitly placed into PASCAL record format.

The Pass One output file is defined in PASCAL as a FILE OF
PARSREC.

14



The complete definition of PARSREC follows:

CONST
SLINSIZ = 80; (* Maximum number of characters in

each source line *)
STBLSIZ = 100); (* Size of the symbol table *)

TYPE
SYMNUM = I..STBLSIZ; (* Symbol numbers indexing into the

symbol table *)
LCHARTYP = I..SLINSIZ; (* Index of characters across the

source line *)
REGNUM = 0..7; (* Register numbers *)
ADRTYP = (INSTR,DATA); (* An address contains either

instructions or data *)
LINTYP = PACKED ARRAY

[LCHARTYPI of CHAR; (* One source line *)
OPERATOR = (HLT, LA, AA, (* These operators(using the

ANA, SA,C, ULTRA mnemonics) are
JNE, JE, JG, supported at this time -

JGE, JLT, easily expandable to the
JLE, J, NOOP, full instruction set *)
NONE);

OPANDTYP = (* These are the different operand
RECORD subfields *)

A,KB,S, : REGNUM; (* Eight of each of these registers *)
M,P : 0..31; (* Additional fields used in some

instructions - number of bits to
shift, etc. *)

Y : SYMNUM (* A symbol table entry is made for
each unique occurrence of Y *)

END; (* OPANDTYP *)
PARSREC = (* The format of output for Pass One *)

RECORD
COMMENT : LINTYP; (* Each line can have an

associated comment *)
CASE ADRTYP OF; (* The instruction map contains

ADRTYP information *)
DATA : (VAL : INTEGER); (* Initialization value *)
INSTR:
(OPCODE : OPERATOR;
OPERANDS : OPANDTYP)

END; (* PARSREC *)

The advantage of converting each line of source code into PARSREC is

one of convenience for Pass Two. It is true that the translation to
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STRIPE which Pass Two performs could have been done concurrently with
Pass One, but the resulting code would have been much less modular and
harder to debug and extend.

The ULTRA/32 operators presently supported by ZEBRA, which are
discussed in this report, are now listed with their meanings:

HLT Halt the process.

LA Load an accumulator with the contents of a memory
location.

AA Add the contents of a memory location to au accumulator.
ANA Add the negative of the contents of a memory location to

an accumulator.
SA Store the contents of an accumulator into a memory

location.
C Compare the contents of an accumulator with the contents

of a memory location and set the condition codes
accordingly.

JNE Jump to a specified location if the condition codes
reflect a "not equal" condition.

JE Jump to a specified location if the condition codes
reflect an "equal" condition.

JG Jump to a specified location if the condition codes
reflect a "greater than" condition.

JGE Jump to a specified location if the condition codes
reflect a "greater than" or "equal" condition.

JLT Jump to a specified location if the condition codes
reflect a "less than" condition.

JLE Jump to a specified location if the condition codes
reflect a "less than" or "equal" condition.

J Unconditional jump to a specified location.
NOOP No Operation.

In general, an UITRA/32 instruction has associated with it more
than one operand subfi,'ld. For instance, the LA (Load Accumulator)
instruction has the following operand subfields:

A : 0...7; Specifies which of eight accumulators is used.

Y : Symbolic; Specifies the data memory location.
K : 0...7; Specifies which fields of the 32-bit Y operand

is used. (i.e., address, first half word,
second half word, whole word, or one of the
four bytes)

B : 0...7; Specifies which Index Register is used. (A B-field

of 0 indicates no indexing.)
S : 0..7; Specifies which Base Register is used. (Segmenta-

tion is the memory scheme.)

16
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If any of these subfields is omitted from the source coding line,
the default value is 0. The Y subfield of every instruction is
assumed to be symbolic by ZEBRA. In other words, absolute addresses
(numerical) are not handled by ZEBRA. Absolute addresses on one
computer, in general, have no meaning on another. The ULTRA/32
assembler recognizes the Y subfield as a number of words of
displacement from the contents of the Base Register indicated in the
S subfield. So, two uses of the same symbolic Y subfield name with
different S subfields would be viewed by the assembler as two
different variables. One (presently unimplemented) way of accounting
for this fact in the decompiler is to append the S subfield value
symbolically to the name in the Y subfield before entering the name
into the symbol table. This action, if consistently taken, resolves
any naming ambiguities.

The Y subfield is represented in the output file of Pass One as
a symbol number, that is, an index into the symbol table. A symbol's
name is placed into the symbol table and, thus, given a number as soon
as the lexical analyzer discovers it in the label field of some line
or in the operand field of some instruction. However, no other
information concerning the symbol is retained until it is seen in the
label field of a line and the thing it labels identified.

As an example of an instruction in a Pass One input file and its
corresponding entry in the output file, consider the following
instruction:

LINELABL LA I,LOC,,5 This is a comment.

The PARSREC entry corresponding to this instruction contains the
following component values:

OPCODE < = LA;
OPERANDS

•A< I;
.Y <= 2;
.K< = 0;
.B<= 5;
.S<= 0;
.M <= 0;
.P <= 0;

COMMENT <= "This is a comment."I

Two entries are made into the symbol table: one for "LINELABL" and one

for "LOC". The symbol "LINELABL" is given symbol number I, and "LOC"
is given symbol number 2. Note that the Y component of PARSREC
takes on as its value the symbol number of "LOC".

17
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The symbol table is defined in PASCAL as an

ARRAY ISYMNUM) OF STBLENT
The complete definitions of SYMNUM and STBLENT follow:

OONST
STBLSIZ = 100; (* Size of the symbol table - may be

arbitrarily changed *)
MAXSYMSIZ = 8; (* Maximum number of characters

allowed in a symbol name *)
MAXPROGSIZ 600; (* Maximum total number of lines in a

program
TYPE

LINENO = l..MAXPROGSIZ; (* Line number of program from

beginning *)
SYMNUM = I..STBLSIZ; (* Symbol numbers indexing into

the symbol table *)
SYMARR = PACKED ARRAY

[l..MAXSYMSIZJ

OF CHAR; (* String which holds the symbol name
SYMTYP = (IMMED,SIMPVAR, (* Type of Symbols - constants, simple

ARRVAR,SIMPTRAN, variables, arrays, simple transfers
NOTYP); (instruction labels) *)

STBLENT = (* Each symbol table entry contains
this information*)

RECORD
NAME : SYMARR; (* Name of the symbol *)
CASE TYP : SYMTYP OF (* If the type of the

symbol is *)
IMMED : (* Immediate *)

(VAL : INTEGER); (* Then it has a value *)

SIMPVAR, ARRVAR,
SIMPTRAN (* For these types, it has

an address *)
(ADDR, SIZE :
LINENO) (* Size only used for array variables *)

END; (* STBLENT *)

A symbol can be one of four different types: simple variable,

array variable, constant, or simple transfer (instruction label).
In order to be a valid symbol, it must appear once in the label field
of some line. When that line contains a valid operator in the operator
field, the symbol must represent the destination of a JUMP instruction

and thus is of type SIMPTRAN. The phrase EQU in the operator field of
a line indicates that the label is a constant (type IMMED). Finally,
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an integer in the operator field indicates that the symbol is a variable
and the integer is the initial value. The type is ARRVAR, if more initial
values follow on succeeding unlabeled lines; it is SIMPVAR, otherwise.
NOTYP is used as an initial type for symbols whose names have been disco-
vered in the operand field of an instruction but have not yet been seen to

label a line. An error condition is indicated if the type of any symbol is
NOTYP at the end of Pass One. In fact, the symbol type information is used
primarily for detection of certain errors.

The symbol table contents after scanning the instruction

LINELABL LA I,LOC,,5 . This is a comment.

are described here:

SYMBOL NUMBER <= 1
NAME <= "LINELABL";
TYP < = SIMPTRAN;

ADDR< = Current line number;
SYMBOL NUMBER < = 2

NAME < = "LOC";
TYP < = NOTYP;

The TYP value of NOTYP for symbol number 2 indicates that symbol has
not yet been found to label a line. Also, that symbol has no valid address
in the symbol table for the same reason.

CONTROL FLOW ANALYSIS

In order to decompile to a higher semantic level, it is necessary not
only to identify a program's instructions, but also to determine how the
instructions are related with respect to their execution sequences (i.e.,
the control structure). The methodology for determining the program flow
of control is borrowed from compiler technology. Decompilation and compi-

lation utilize control flow analysis for similar purposes. In both cases,
flow analysis is used in determining the appropriateness of local optimi-

zations. Since decompilation requires something of a local optimization,
the effectiveness of flow analysis in decompilation is somewhat predictable.

The first step in flow analysis is to break the source program into
basic blocks. In compilation, a basic block is a sequence of consecutive
instructions that may be entered only at the beginning of the block. Once
the basic block is entered, its instructions are executed in sequence
without halt or possibility of exit from the block except at the end of the
block. This definition is amended slightly for decompilation by specifying

that the end of a basic block may contain more than one JUMP instruction as
long as all but the last are conditional jumps and are conditional on the
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value of the same operand or pair of operands. This modification to the
definition of basic blocks generally reduces the number of blocks

contained in a program without sacrificing any information.

It is useful to portray basic blocks and their successor
relationships by a directed graph called a flow graph. The nodes of the
flow graph are the basic blocks, and the paths are specified by the
presence or absence of JUMP instructions. The operands of all the JUMP
instructions contained within a block define the immediate successors of
that block.

The block (call it "B") beginning with the instruction physically
following the last instruction of block A is the possible exception to
this definition of immediate successors. Block B is counted among the
immediate successors of block A if block A contains no unconditional
transfer of control instruction and its conditional transfer of control
instructions do not account for every logical case of the operands being
tested. For example, there would be an implied transfer of control to
the physically succeeding block of block A if the JUMP instructions of
block A only included the "less than" and "equal" relations of one pair
of operands. If the case occurs that "greater than" is true, then
control is transferred to the physically succeeding block. The flow
graph must reflect this information. Note that this method for
determining the control structure is even effective on unstructured code.

Consider the following ULTRA/32 program:

(1) LABLI LA I,XYZ
(2) C I,SOMEMEM
(3) JG LABLI
(4) JE LABL3
(5) LABL2 J LABLI
(6) LABL3 LA 2,OTHERMEM
(7) J LABL2

The flow graph for this sample program is located in figure 5.

Block Table Description

Block bounds and the flow graph are organized into a block table in
ZEBRA. Once again, the most convenient language in which to describe the
structure of the block table is PASCAL. The block table is defined to be:

ARRAY [BLKNUMIOF BTBLENT
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A description of BLKNUM and BTBLENT follows:

CON ST
BTBLSIZ =250; (* Size of the block table - can

be arbitrarily changed *)

MAXPROGSIZ = 600: (* Maximum number of lines of the
source program - may be changed
arbitrarily *)

TYPE
LINENO = 1. .MAXPROCSIZ; (* Number of lines since

start of source program *

BLKNUM = l..BTBLSIZ; (* Block numbers - index
into block table *)

BINFLNK = ^BLKNFO; (* BINFLNK and BLKINFO define
a linked list of block

numbers *)
BLKINFO = (* Dynamic list of block numbers *)

REGORD

Next : BINFLNK; (* A pointer to the next
element of the list * c
attributes associated with it *)

DATA BLKNUM; (* The block number itself *)

END; (* BLKINFO *)
BTsLENT = (* Each block has the following

attributes associated with it *)

RE CORD
FINST, LINST : LINENO; (* The line nu",3l of the first

and last instructiora contained
in a particular block *)

ISBAS : BINFLNK; (* The base pointer to the list of

immediate successor block
numbers *)

END; (* BTBLENT *)

21
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The contents of the block table generated for the program whose

flow graph is illustrated in figure 5 follows:

BLOCK NUMBER < = 1
FINST < = 1;
LINST <= 4:
ISLST <= 1,3,2;

BLOCK NUMBER < = 2

FINST '= 5;
LINST <= 5;
ISLST <= i,

BLOCK NUMBER< = 3
FINST < = 6;

LINST< = 7;
ISLST < = 2;

Note that the first and last instructions of a block are recorded in

the block table as line numbers in the program. The immediate
successor lists are lists of block numbers.

Block Table Generation Algorithm

A variety of circumstances combine to indicate the bounds of a

basic block. The first instruction in a program begins the first
block. Pass One linearly scans the program until the first

instruction is found, initializes an entry in the block table, and

assigns the current line value to be the first instruction of the new

block. In every other case, the first instruction of a block is the
first instruction following the last instruction of the physically

preceding block. Note that in assembly language programs data often

intervenes between basic blocks. So, the first instruction of a block

may not necessarily fall on the line immediately following the last

instruction of the physically preceding block but rather on the first

line following where an instruction appears.

One circumstance that indicates the end of a block is the

detection during scanning of an unconditional JUMP instruction, a HALT

instruction, or conditional JUMP instructions which account for every
logical case of the operands being compared. The current instruction
being scanned when this circumstance is detected is the last
instruction of the current block. The end of a block is also

indicated by the detection of a non-JUMP instruction following
conditional JUMP instructions that do not account for every logical

case of the operands being compared. Another indication of the end of

a block is the discovery that the label of the instruction line

currently being scanned is the destination of a previously scanned

JUMP instruction. In these two cases, the previous instruction is the

22

k "1



last instruction of the current block, and the current instruction is
the first of a new block. Other indications of the end of a block are
discussed next.

The method for determining whether or not a sequence of

conditional JUMP instructions accounts for every logical case of the
operands being compared turns out to be quite simple. A condition
value is preserved during Pass One of ZEBRA which reflects the status
of the current location with respect to conditional JUMPs. Initially,
before any JUMP instructions are detected, the value of the condition
value variable is 0. As JUMP instructions with the following
conditions are detected, the indicated increments are added to the
condition value:

Condition Condition Value Increment

< I
2

> 4
>= 6
< > 5

< = 3
Unconditional 7

When the condition value reaches or exceeds 7, every logical
condition of the variables being compared has been accounted for in
that block's sequence of conditional JUMP instructions. For example,
the sequence JL (Jump Less Than), JE, JG yields sequential condition
values of 1, 1+2=3, 3+4=7. Hence, a block ends with the JUMP
instruction that last incremented the condition value, and the
condition value is reinitialized. A new block is also indicated if a
noz-JUMP instruction is scanned when the condition value is non-zero.
This occurrence shows that some JUMP instructions were scanned,
indicating that the current block should be ended, but that not all
logical relations of the compared operands were accounted for.
Therefore, an implied JUMP to this new block exists, and this block,
beginning with this instruction, is an immediate successor to the
block just ended. Note that the conditional JUMP instructions of one
block are ensured to depend on the relationship of exactly two
operands using this method. For more than the original two operands'
relations to be involved in the conditional JUMPs, a COMPARE
instruction would have to intervene (changing the condition codes).
Since a COMPARE instruction is a non-JUMP instruction, this code would
be interpreted by ZEBRA as indicating a new basic block.

The previous paragraph discusses one case for determining the
immediate successor of a basic block. However, immediate successors
are usually determined by their status as destinations of JUMP
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instructions. When a JUMP instruction is encountered in ZEBRA, the
symbol table is searched to see whether or not the line labeled with
the destination of the jump has been scanned. (It has not been
scanned if there is no entry in the table for this symbol or if the
type of that symbol is NOTYP.) If the line has indeed been scanned,
then the block table is searched to determine to which block the
destination belongs. If the destination is the first instruction of a
block, that block becomes an immediate successor of the current
block. Otherwise, the jump destination falls in the middle of some
block, and that block must be split. Consider such a case in which an

existing block is to be split into new blocks 1 and 2. First, the
destination of the JUMP instruction becomes the first instruction of
block 2 and the last instruction of the old block becomes the last
instruction of block 2 (unless the destination of the jump is in the
current block, in which case block 2 becomes the current block).
Next, the instruction immediately preceding the destination becomes
the last instruction of block 1 and the first instruction of the old
block becomes the first instruction of block 1. Finally, block 2
becomes the immediate successor of block 1, and the immediate
successors of the old block become the immediate successors of block 2.

If the line labeled with the destination of the JUMP instruction
has not been scanned, then that symbol's name is first entered into
the symbol table if it has not already been entered. Then, its symbol
number is appended to a linked list data structure called the
Unscanned Block List (if not already there). This structure is a list
of the labels of the first instructions of all unscanned blocks which
have been discovered thus far. Associated with each label in this
list is a reference list of block numbers that contain a JUMP
instruction whose destination is the line with this label. When a
label is entered into the Unscanned Block List or the attempt is made
for a label already contained in the list, the block number containing
the JUMP instruction that references this unscanned block is entered
into the reference list for that label. Hence, the Immediate
Successor List of each block numbered in the reference list should
include the block that contains the jump destination. The information
kept in the Unscanned Block List is used and removed from the list
when the line label of any instruction matches an entry in the
Unscanned Block List. When an instruction is scanned for which that
is true, it is known that a new block should start at that point. The
current block is first ended with the previous instruction. Then,
information gathering about a new block is begun in the block table;
the new block gets a number. Finally, this new block number is added
to the Immediate Successor Lists of each of the block numbered in the
reference list of that entry in the Unscanned Block List.
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INTERESTING EXCEPTION ONDITIONS DETECTED BY PASS ONE

Several conditions result in an exception being raised during
Pass One processing. The UYK-7 is a ones complement machine, and
therefore represents -0 differently from 0. Since most modern
computers use twos complement representation, ZEBRA is justified in
detecting and flagging occurrences of this constant in the source
program. I/O and interrupt instructions, along with other unsupported
instructions, are also detected and flagged by ZEBRA because of their
machine-dependent nature.

JUMP instructions whose destination is indexed by some non-zero
value indeterminate at translation time are not acceptable to Pass
One. Since the index register can often take on unpredictable values,
the destination of the JUMP instruction is often unpredictable. This
case compromises the integrity of the entire flow graph produced by
Pass One and thus cannot be allowed.

Indirection is also flagged, untranslated, by ZEBRA at this
time. Since the point of indirection is indeterminate at the time of
translation, its use as the destination of a JUMP instruction could
unpredictably violate the flow graph in the same way as an indexed
jump. However, another problem is introduced by allowing unrestrained
use of indirection in general. Normally self-modifying code is
detected by Pass Two by examining the operands of instructions which
store data into memory. Self-modifying code is indicated if the
destination of the STORE is an instruction location. Of course, the
semantics of self-modifying code are highly machine dependent. Use of
indirection inhibits Pass Two's ability to detect self-modifying code
and, hence, is rejected by ZEBRA.
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PASS TWO - TRANSLATION TO STRIPE

rhe task of Pass Two is to translate the formatted output of Pass

One into STRIPE. Pass Two implements a one line to one line trans-
lation of the input file of strongly formatted ULTRA/32 to STRIPE

(formatted in PASCAL records). The Pass Two translation of ULTRA/32
to STRIPE is carried out on this one-to-one basis as a precursor to

the program reduction or optimization phase of ZEBRA (Pass Three).
During this translation phase, the original source program comments
and symbol names are preserved. This feature of the translation is
important in providing for program modification and extension at the

target level.

The basic structure of STRIPE was extracted from the structure of

an intermediate representation often used for compilation, simple
quadruples. During the design phase of ZEBRA, it was suggested that
an existing formal intermediate level language such an UNCOL or P-code
(an often used intermediate language in PASCAL compilation) might make
a good choice for an intermediate language in ZEBRA, particularly
since code generators already exist for these languages. However, use
of those languages was rejected on the grounds of their inflexibility
and inability to adapt to many source machine-target machine pairs.
An important quality of the intermediate language in a decompiler is
its ability to represent, succinctly, the semantics of a program

independent of any particular machine.

The output file of Pass Two is defined to be a FILE of STRIPE.

STRIPE has the following PASCAL definition:

CONST
STBLSIZ = 100; (* Size of the symbol table -

arbitrarily extensible *)
SLINSIZ = 80; (* Maximum number of characters

in a source line *)
TYPE

ZSYMNUM = 0..STBLSIZ: (* Symbol numbers as used in
the symbol table and

0 - no symbol *)
LCHARTYP = I..SLINSIZ; (* Index of characters across

the source line *)
STROPTOR = (HALT, ASN, ADD,

SUB, JNE, JE,
JG, JGE, JL,
JLE, JMP, NONE); (* STRIPE Operators - NONE

signals that no output
instruction is generated *)
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ADRTYP = (INSTR, DATA); (* An address contains either
instructions or data *)

LINTYP = PACKED ARRAY

ILCHARTYP]of CHAR; (* One source line *)

STRIPE = (* Format of output for Pass Two *)

RECORD
COMMENT : LINTYP; (* Each line can have an associated

comment *)

CASE KIND : ADRTYP OF; (* Kind of line *)
DATA : (VAL : INTEGER): (* Data initial values are

preserved *)

INSTR:

(OPERATOR ; STROPTOR; (* STRIPE operators *)
FRSTOPAN, SECOPAN,

DEST : ZSYMNUM) (* Three operands *)

END; (* STRIPE *)

Instructions in STRIPE take the form of

OPERATOR OPERANDI OPERAND2 DESTINATION V

STRIPE operators are easily understandable. Following is a list

of the STRIPE operators which are presently implemented along with a
description of their meanings.

HALT Halt the process.

ASN Assign the contents of OPERANDI to the DESTINATION.

ADD Add the contents of OPERANDI to the contents of OPERAND2

and place the result in the DESTINATION.
SUB Subtract the contents of OPERAND2 from the contents of

OPERANDI and place the result in the DESTINATION.

JNE Jump to the DESTINATION if the contents of OPERANDI and
OPERAND2 are "not equal."

JE Jump to the DESTINATION if the contents of OPERANDI and
OPERAND2 are "equal."

JG Jump to the DESTINATION if the contents of OPERANDI are
"greater than" those of OPERAND2.

JGE Jump to the DESTINATION if the contents of OPERANDI are
"greater than" or "equal" those of OPERAND2.

JL Jump to the DESTINATION if the contents of OPERANDI are

"less than" those of OPERAND2.
JLE Jump to the DESTINATION if the contents of OPERANDI are

"less than" or "equal" those of OPERAND2.

IMP Unconditionally JUMP to the DESTINATION.
NONE No instruction.
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Consider the ULTRA/32 instruction sequence which represents the
PASCAL equation C := A+B:

LA i, A, 3 3 indicates the whole word.
AA 1, B, 3
SA 1, C, 3

That same sequence in STRIPE would be represented as

ASN A < NULL>' $REGAI$$
ADD B $REGAI$$ $REGAl$$
ASN $REGAI$$ <NULL> C

Note that Accumulator Register 1 is represented in STRIPE by the
temporary variable name $REGAI$$. This representation is explained in
greater detail below. This form of representation is particularly
well suited to simplification (as in Pass Three). The preceding
example is represented (after Pass Three) as

ADD B A C,

assuming that all the conditions for reduction are met.

The simplicity of STRIPE Operators is one of the more desirable
features of STRIPE. The mapping from ULTRA/32 operators to STRIPE is
quite straightforward. Even though the prototype of ZEBRA described
in this report only encompasses 14 instructions out of the UYK-7
repertoire, the set and its mapping to STRIPE is exemplary of the
repertoire in general and its mapping to STRIPE. The 14 were chosen
for their frequency of use and their ability to demonstrate some of
the domains of the utility of ZEBRA. STRIPE's flexibility illustrates
a key point in the design of an intermediate representation for
decompilation. Whenever the semantics of a source instruction cannot
be successfully represented at a higher semantic level, the designer
of a decompiler should be allowed to represent the semantics of that
instruction at a lower level. A fundamental mistake of many previous
decompiler designers has been to attempt to decompile every
instruction of the source program to a high-level language. ZEBRA
avoids that problem through the flexibility of STRIPE.

The locations of data and their initial values are preserved in
STRIPE. This feature was included for several reasons. First,
preserving this information adds to an understanding of the source
program. The assumption made here is that the data were placed at
their locations for valid reasons. Additionally, nothing is to be
gained by listing all the data in one section of the program since a
low-level language is the translation target, and program readability
is an aim.
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There are two fundamental goals that STRIPE was successfully
designed to meet. First, it provides for the removal of machine
dependency from the translated program. Independence from the

mnemonics of ULTRA/32 grants a good measure of this, and elimination
of the concept of LOAD and STORE is also effective in avoiding the
constraints of the UYK-7 architecture. The other goal is to remove
the operand implications from the program. In other words, all
operands are explicitly referenced in STRIPE. This goal is worthwhile
since it adds to the measure of liberation from one machine's
architecture. For instance, the ULTRA/32 instruction

LA 1, DATA, 3

loads the contents of "DATA" into Accumulator Register 1. In Pass Two
of ZEBRA, Accumulator Register I is given an ordinary variable name
"$REGAI$$", an entry in the symbol table, a location at the end of the
program, and an initial value of 0. Hence, in STRIPE, the
instruction is represented as

ASN DATA <NULL> $REGAI$$.

Since condition codes differ widely between computers, the
ULTRA/32 COMPARE instruction is specially treated by Pass Two. The
COMPARE instruction translates to no equivalent instruction in STRIPE,
but its semantics are captured by the conditional JUMP instructions
that follo- in the same block. Specifically, the two operands being
compared by the COMPARE instruction are explicitly named in each
subsequent conditional JUMP instruction of the current block. For
instance, the sequence

C 0, XYZ, 3 This is a comment.

JNZ PLACE . This is, too.

translates to

<-NONE> This is a comment.

JNZ $REGAO$$ XYZ PLACE This is, too.

Note that comments are preserved. Any conditional JUMP instruction
that does not have a COMPARE instruction preceding it in the same
block is detected as an error condition.

Self-modifying code is detected by Pass Two and flagged as
unacceptable. Self-modifying code is an area of a program acting as
both data and instruction. It is detected by examining the
destinations of instructions that store data into memory. If the
symbols representing those destinations are catagorized as SIMPTRAN in
the symbol table, then the destination is an instruction location.
Elimination of self-modifying code is justified by the machine
dependctt semantics of such code.
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PASS THREE - PROGRAM SIMPLIFICATION

Pass Three of ZEBRA reduces the STRIPE representation, where
appropriate, by eliminating extraneous LOAD and STORE instructions.
This step contributes to the production of machine independent
programs by freeing them from the accumulator machine protocol. The
program reduction is carried out on a block by block basis, but each
prospective case of reduction is contingent upon information of a
global scope. As before, program comments and symbol names are
preserved through the simplification.

As an example of the simplification performed by Pass Three,
consider the following block in STRIPE:

(1) ASN XYZ <NULL > $REGAI$$
(2) ADD ABC $REGAI$$ $REGAl$$
(3) ASN $REGAI$$ <NULL> DEF
(4) JGT $REGAI$$ LMN GREAT

Pass Three first detects the use of an ASN instruction in line
(I) whose destination is not redefined before it is used in subsequent
line (2). Assuming that the global criteria for reduction (to be
described later) are satisfactorily met, the source operand from the
ASN instruction in line (1) is substituted for the occurrence of its
destination as an operand in line (2), and line (1) is eliminated.
This step yields

(2) ADD ABC XYZ SREGAI$$
(3) ASN $REGAI$$ <NULL> DEF
(4) JGT $REGAI$$ LMN GREAT

This type of substitution is called "forward" substitution because the
line that was eliminated is behind the line in which the operand
substitution took place.

Next, the destination of line (2) is discovered to be the source
operand of a subsequent ASN instruction in line (3). Assuming, once
again, that the reduction criteria are met, the destination operand of
the ASN instruction in line (3) is substituted for the destination in
line (2). In all subsequent lines before the destination operand of
line (2) is redefined, occurrences of this symbol as source operands
are substituted by the destination operand of line (3). Finally, line
(3) is eliminated. This step yields the block

(2) ADD ABC XYZ DEF
(3) JGT DEF LMN GREAT
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This step is called "backward" substitution because the line that was
eliminated is in front of the line in which the destination
substitution took place.

BUSY ANALYSIS

In accomplishing this reduction phase of ZEBRA, an important
concept from compilation technology is utilized to help determine the
appropriateness of reduction. This concept is called the "busy
status" of variables. In ZEBRA, a variable is busy at some location
if it is fetched before it is redefined past that location. For
instance, in the following sequence of instructions, variable ABC is
busy at line (1) because it is fetched at line (3) before it is
redefined at line (3):

(1) ASN DEF < NULL > ABC
(2) ADD XYZ DEF DEF
(3) SUB ABC DEF ABC

In compiler optimization, a variable used within a block is often
tested for its status relative to the "busy upon exit" attribute. The
status is positive if that variable is busy in any of the immediate
successors of the containing block or in any of those blocks'
immediate successors. In compilers, that test is generally used to
determine the appropriateness of reorganizing the order of basic
blocks. In ZEBRA, that test is implemented by means of a recursive
boolean function, and is used for program reduction. The function
BUSY accepts as a parameter a list of immediate successor blocks in
which to search for busy occurrences of the subject variable. Its
execution begins with analysis of the first block numbered in the
successor list. It scans this block, line by line. If the subject
variable appears in any instruction line as a source operand before an
instance of the variable as a destination operand, then the function
returns a TRUE value. If, on the other hand, the vat iable appears as
the destination operand of an instruction b;!fore it appears as a
source operand, then the variable is redefined along its present flow
path and, hence, cannot be busy along that path. If the variable is
thus redefined, then the next block is taken from the immediate
successor list passed to the function, and the scanning analysis
begins on it. However, if there is no instance of the subject
variable in this block, the function BUSY is called recursively with
this block's immediate successor line as its parameter. Therefore, a
depth-first search for incidences of a particular variable through
block immediate successor lists is implemented.
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The search is concluded and a value returned when a busy
occurrence is found or when all the blocks in the immediate successor
list and all their immediate successors have been scanned (if need
be). The block numbers of blocks that have been scanned are kept in a

list so that infinite recursion is impossible. Note that using this
list also enhances the efficiency of the function. Once it is
determined that scanning a certain instruction path leads to no busy
occurrence of the subject variable, there is no reason to scan it
again.

In addition to the function BUSY, ZEBRA incorporates a procedure
BLKBSY, which generates a list of all busy occurrences of a subject
variable within the current block beginning with a point specified to
the procedure. These are called "block busy occurrences." The scan
stops at the end of the block or when the subject variable is
redefined.

BLOCK REDUCTION

Pass Three first sends, unchanged to the output file, all data

lines and comment lines until it reaches the beginning of a block. It
then inputs the entire block and begins scanning each instruction. If
the operator is an ASN operator, then forward substitution is
attempted. If it is any other non-JUMP operator that places a result
into its destination operand, then backward substitution is
attempted. In general, forward substitution is used for eliminating
extraneous LOAD instructions, whereas backward substitution is used
for extraneous STORE instructions. Finally, the block is output, and
the algorithm is repeated until the entire program is finished.

Forward Substitution

This section describes the criteria for reducing the program by
eliminating the current instruction, an ASN instructon, and
substituting forward of this point. Let I represent the line number
of this ASN instruction.

First, the reduction is not allowed if the destination of line

I is an indexed variable (array variable). The symbol table contains
this information. The reason for this exclusion is that iL is
impossible to tell, in general, whether an indexed variable is busy
since the index value is determined at run-time. Next, a list of

block busy locations past I of the destination operand of line I is
generated by invoking procedure BLKBSY. As long as this list is not
empty, the last block busy occurrence and each instruction within the
block beyond the last occurrence are scanned to determine whether the
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destination operand of line I is redefined. This would indicate
that the destination operand of line I is not busy past its last
block busy occurrence. Let K represent the line number of the last
block busy location of the destination of 1. If this variable is not
redefined within the block, then it is tested for the "busy upon exit"
condition.

Assuming that the destination operand of line I has met all the
criteria up to this point and that it is not busy upon exit from the
current block, the source operand of line I is tested for type
SIMPVAR. If it is tested, then the area of the block between I and
K is scanned to ensure that the source operand of line I is not
redefined. If the source operand of line I is not redefined, then
line I meets all the criteria for elimination. The source operand
of line I is substituted fur each of the block busy occurrences of
the destination of line I as recorded in the list, and line I is
eliminated from the program.

There is still some chance for reduction even if the source

operand of line I is of type ARRVAR. If there is no question
concerning whether the value of the index could be changed between I
and K, then the criteria for reduction are met. Therefore, if no
instruction between I and K redefines the Index Register,
reduction, as described in the preceding paragraph can occur.

Backward Substitution

This section describes the criteria for eliminating an ASN
instruction located forward of the current instruction (a non-ASN
instruction) and substituting back in the current instruction and
forward of the eliminated instruction. Let I represent the line
number of this current non-ASN instruction.

In this scheme, reduction is not allowed if the destination of
line I is an indexed variable. The symbol table contains this
information. This exclusion exists because it is impossible to tell,
in general, whether an indexed variable is busy since the index value
is determined at run-time. A list of block busy locations past I of
the destination operand of line I is generated by invoking procedure
BLKBSY. As long as this list is not empty, the first entry in the
list (the one nearest I) that indicates an ASN instruction is found.
If one exists, then it is a candidate for elimination. Call the
location of this instruction K.

If the destination variable of line I is redefined within the
block past K or if it is not busy upon exit, then the type of the
destination of K is examined. In order still to be considered for
regular elimination, its type must be SIMPVAR. Next a list of block
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busy occurrences of the destination of line K past I is compiled.
If any entry in this list is between I and K, then substitution
cannot occur because the destination of line K is being used for
different purposes in this area than at K. Otherwise, backward
substitution can occur. Backward substitution consists of replacing
each occurrence of the destination operand of line I in its block
busy list with the destination of line K (the ASN instruction).
Next, the actual destination operand of line I is replaced with the
destination operand of line K and line K is eliminated.

There is still some chance for reduction even if the destination
operand of line K is of type ARRVAR. Special case reduction is
indicated if no instruction between I and the last block busy
occurrence of the destination of I redefines the Index Register.
Reduction is carried out as described in the preceding paragrarl..
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CON CLUS IONS

One method of achieving a certain measure of portability for
assembly language software has been Oescribed. This report does not
imply that decompilers should or (even practically) could be built that
capture the semantics of every program written in the source assembly
language. On the contrary, decompiling is, in general, an incomplete
process. While it may be possible to transport an arbitrary program
completely through decompilation, it is not economically practical to
do so. Programmer tricks and special cases raise the complexity of
total decompilation to exorbitant levels. Decompilation is meant to be
an aid to the transportation process, not to be the entire process
itself.

A factor that greatly affects the degree of translation achieved
by a decompiler is the level of the decompilation target language. If
it can represent low-level constructs such as shift and mask, then more
of the software can be captured than through the use of a language in
which such constructs have no meaning. For instance, a circular shift
has no meaning in a high-level language such as PASCAL. Flexibility of
the decompilation target language should be its overriding aim.

The target level of decompilation in ZEBRA seems to be both
necessary and sufficient to achieve its goals relative to portability.
After analyzing several programs typical of the UYK-7 applications, it
was determined that the Load Accumulator and Store Accumulator
instructions are generally used much more often than an" other
instruction in the UYK-7 repertoire. In fact, it was obF rved that the
Load Accumulator instruction was used more than twice as often as the
fourth most often used instruction. (The Unconditional JUMP
instruction was ranked third.) Therefore, eliminating uses of these
instructions when they are extraneous to the semantics of the program
contributes substantially to the space efficiency of the decompilation
target program. In fact, Housel, I 1 in implementing a similar scheme
for eliminating extraneous LOAD and STORE instructions observed, 'For
the samples tested, the text compression process reduces the "volume"
(no. of instructions) of the program up to 40 percent.'

As an intermediate representation, STRIPE is successful because
of its flexibility and simplicity. Its further use is encouraged by
the structure of the assembly languages of currently popular machines.
Computer architects are striving to raise the semantic levels of their
computers' native languages. For instance, Digital Equipment
Corporation's VAX 11/780 computer has an ADD instruction which
duplicates the STRIPE ADD instruction in structure and interpretation.
This trend toward higher level native languages should continue.
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Use of a decompilation system such as ZEBRA has certain fringe

benefits aside from. the obvious ones. In addition to the benefits
gained by translating a program to another language such as the
ability to perceive it from a new point of view, ZEBRA provides a
control flow graph of the program. If this ability were coupled with
some additional software, then an automatic documentation and an
automatic flowcharting capability would be added to the system. This
capability would be quite useful in maintaining old software.

A few words should be said about the efficiency of decompilation
as considered in the design phase. Since a decompiler is intended to
be an aid to portability, it is not likely to be executed more than
one or two times for a given source program (as opposed to the several
times a compiler being used to develop a program would be executed).
Therefore, where tradeoffs arise, the decompiler should prefer space
economy over execution time economy because it is always taking up
space somewhere, but is rarely being executed. However, the product
of decompilation must be easily understandable because program
development may continue after translation. Hence, clarity issues
should take precedence over both time and space issues.

In designing this prototype of ZEBRA, several features were
omitted with the understanding that future revisions would possibly
include them. At first, of course, more instructions must be added to
those handled by ZEBRA along with the data types supported by
ULTRA/32. Addition of these instructions and data types is a
strightforward programming task because of the modularity of ZEBRA and
the flexibility of STRIPE. ZEBRA should also be modified to support
more of the ULTRA/32 assembler directives.

The base registers of the UYK-7 can be supported by ZEBRA by
appending the register number, which appears in an instruction S
subfield, to the name of the symbol appearing in the Y subfield of
th-! instruction before entering it or accessing the symbol in the
symbol table. The section dealing with Pass Two discusses this
solution.

The K subfield designator is best accounted for directly in
the structure of STRIPE. Since the K subfield indicates data type
information about the operand of an instruction, its information
should be represented at the highest semantic level. In other words,
data type information is, by nature, at a rather high level, and the
highest level of representation in ZEBRA is STRIPE. Hence, data type
descriptors should be added to the operand information kept in each
record of STRIPE in order to fully support the ULTRA/32K subfield.
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Indexed jumps are currently flagged by Pass One on the grounds

that the capability they give the language for transfer of control
based on dynamic parameters compromises the integrity of the control

flow analysis. However, if the range of values that can be attained
by the Index Register is limited to some small set, then that
information can be contributed to the system and the flow graph
modified accordingly. The Index Register range information can

perhaps be generated from a global analysis of operand instances of
the Index Register. An alternative way to get that information is to
ask the user. However, that implies a very smooth interface between
the translator and the user.

Indirection in JUMP instructions is precluded for the same
reasons as indexed JUMPs. Without significantly more analysis, it is
impossible to limit the number of possible JUMP destinations.
Indirection with STORE instructions renders the detection of
self-modifying code impossible, unless the range of attainable values

of the indirect word is limited. These limits can possibly be
discovered through a global analysis of the indirect word or by asking
the user.

Finally, a code generator from STRIPE to the target assembly
language should be built in order to complete the translation. There
is no reason for this code generator to be any different in principle
from code generators commonly built for compilers. STRIPE's
similarity to many common intermediate languages of compilers
simplifies the task of implementing the code generator.
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